Discussion of "Intermediary Loan Pricing" by Mabille and Wang

Vadim Elenev Johns Hopkins Carey European Finance Association | August 2023

What this paper is not

- Intermediary asset pricing in the typical sense
 - Expected excess returns are very simple:
 - same for all loans
 - just shadow cost of funds
 - All the "action" is in the mix of contracting terms that deliver that same expected excess return
- Mechanism design: optimal contracting in the presence of asymmetric information
 - Banks know what they need to know about borrowers: μ_i and $\overline{V_i}$
 - They are not implementing a screening mechanism to have borrowers reveal their types through choices off a menu

What is a loan?

- Borrowing terms:
 - When: All at once? In installments? At a time of borrower's choosing (credit lines)?
 - How much? Loan amount or credit limit
- Repayment terms:
 - When: Short-term vs. long-term balloon vs. long-term installments
 - How much: fees, interest rate
 - What happens if the borrower doesn't: secured vs. unsecured
- States of the world which will accelerate repayment
 - E.g., covenants, margin calls

Ignore temporal aspects, non-rate prices

- Borrowing terms:
 - When: All at once? In installments? At a time of borrower's choosing (credit lines)?
 - How much? Loan amount or credit limit
- Repayment terms:
 - When: Short-term vs. long-term balloon vs. long-term installments
 - How much: fees, interest rate
 - What happens if the borrower doesn't: secured vs. unsecured
- States of the world which will accelerate repayment
 - E.g., covenants, margin calls

Collapse non-price terms into one object

- Borrowing terms:
 - When: All at once? In installments? At a time of borrower's choosing (credit lines)?
 - How much? Loan amount or credit limit
- Repayment terms:
 - When: Short-term vs. long-term balloon vs. long-term installments
 - How much: fees, interest rate
 - What happens if the borrower doesn't: secured vs. unsecured
- States of the world which will accelerate repayment
 - E.g., covenants, margin calls

Loan: (Rate, Amount, Non-Price Term)

- Borrowing terms: Amount l_i
- Repayment terms: Repay $R_i l_i$ tomorrow
- Non-price terms z_i :
 - Elements of the contract that increase repayment probability holding rate + amount fixed but which lower borrower utility

An (Almost) Reduced-Form Model

• Profit on loan to borrower i:

$$\pi_i(R_i, l_i, z_i) = (R_i - R_f)l_i - \mu(R_i l_i, z_i; \theta_i)R_i l_i$$

- Depends on loan terms (R_i, l_i, z_i) borrower characteristics θ_i which affect expected loss $\mu(R_i l_i, z_i; \theta_i)$, and bank cost of funds R_f
- Expected losses increase in repayment amount, decrease in non-price terms
- Banks maximize total profit $\int \pi_i di$ subject to capacity constraint $\int \rho(\theta_i) l_i di \leq \overline{L}$
- Households have indirect utility $V(R, l, z; \theta_i)$ increasing in l, decreasing in R, z, with $V_{lR} < 0$

Model Implications

- Household heterogeneity θ_i matters to the extent it affects
 - The degree to which losses $\mu(R_i l_i, z_i; \theta_i)$ are endogenous to repayment terms $R_i l_i$
 - Captured by a "sufficient statistic" α_i
 - The degree to which the (constrained) demand for loans is sensitive to the interest rate at the equilibrium level of non-price terms z_i
 - Captured by a "sufficient statistic" ϵ_i (which turns out to depend on α_i in equilibrium)
 - The risk-weight of the borrower $ho(heta_i)$
- Aggregate credit supply depends on cost of funding R_f and lending capacity \overline{L}
 - An L-shaped supply curve

Two Categories of Results

- The effects of a shock to bank credit supply depends on the borrower's total elasticity of demand. Take a negative shock:
 - Elastic (high ε) markets: borrowers are willing to give up loan amount to keep the same rate (e.g., credit cards)
 - Everyone becomes less risky because they're borrowing less
 - Composition shifts towards *relatively* riskier borrowers since their *relative* penalty declines
 - Inelastic (low ε) markets: borrowers are willing to pay higher rates to keep the same loan amount (e.g., mortgages)
 - If they are risky, this may not be feasible since higher rate leads to higher defaults.
 - Composition shifts towards safer borrowers
 - Both consistent with U.S. empirical evidence

Two Categories of Results

- The effects of a shock to bank credit supply depends on the borrower's total elasticity of demand. Take a negative shock:
- The non-price dimension of loan contracting can make banking crises more persistent (but also milder)
 - Standard one-dimensional model: More constrained banks → higher credit spreads → Banks rebuild equity through high retained earnings
 - This model: Bank constraints can lead to tighter covenants or more rationing rather than higher spreads, so the equity rebuild happens more slowly
 - Consistent with Bisetti, Li, and Yu (2023)
 - "Neutrality" result: contacting environment affects impact vs. persistence, not the aggregate effect of constraints in PV terms: *but presumably not in welfare terms for agents who like to smooth!*

Comment 1: What's special about loans vs. bonds?

- (or other securities traded in Walrasian markets)
- Authors' answer: for loans, "asset payoffs are endogenous to asset prices"
- But that's true for all assets in a rich enough model!
 - E.g., Default decision depends on the PV of future payments
 - E.g., investment opportunities depend on the cost of capital
 - In equilibrium, when repayments go up, defaults still go up
- A clarification: for loans, lenders can internalize this endogeneity when pricing individual loans
- Important for comparing persistence of crises in this model vs. canonical models.
 - Same: Banks don't internalize, so lend more at a higher equilibrium rate
 - Different:
 - If asset payoffs are exogenous, this is all pure profit and quickly recapitalizes banks \rightarrow no persistence
 - If they are not, more losses → even higher rates ex-ante, and eventually borrowers simply borrow less/invest less at such high rates → persistent crises
 - The source of quick recoveries in some "canonical" models is on the bank liability side, not asset

Comment 2: What's special about loans vs. tomatoes?

- At a high enough level of abstraction, this is a model explaining who pays \$1 for a regular tomato and who pays \$5 for a pair of organic tomatoes
 - Price, Quantity, Non-Price Terms
- Key difference: the supermarket revenue per tomato doesn't decrease when I buy more of them
 - No rationale for nonlinear pricing
- But why are borrowers willing to do this?
 - It would cheaper (and/or more feasible) to borrow \$10K from Bank 1 and \$10K from Bank 2 than to borrow \$20K from the same bank
 - Banks can prevent this with good underwriting if they can observe $\mu(\int_b R_i^b l_i^b db, z_i; \theta_i)$
 - Does the model require exclusivity? The data doesn't multiple credit cards, secondlien mortgages

Comment 3: Interpretation of risk weights

- Recall that ρ in the capacity constraint $\int \rho(\theta_i) l_i di \leq \overline{L}$ depends only on borrower type, not loan terms
 - Consistent with the interpretation of $\rho(\theta_i)$ as a regulatory risk weight
 - Delivers a separability result: $r_i = r_f + \mu_i + \rho_i v$
 - Excess return $\rho_i v$ is independent of contract features
- But the main experiment relaxing \overline{L} to study credit supply transmission invites a broader interpretation: a reduced-form stand-in for all intermediary balance-sheet frictions
 - In that interpretation, ρ would be a function of μ : riskier assets require more "balance sheet capacity"
 - Constrained intermediaries care about losses beyond their effect on expected payoffs \rightarrow look risk-averse even if they are risk neutral
- Implementing this change would break the separability (a good thing)

Comment 4: Credit Cards as Motivation

- Connection between model and data already a bit tenuous because cards are term loans, not credit cards
- Interchange and annual fees: another unmodeled credit card feature
 - Associated with safer borrowers
- When banks lend more to safer credit card borrowers after a + credit supply shock, are they chasing interest or non-interest income?
- How much balance sheet capacity do safe borrowers use up?

	Credit card industry income, 2016 (billions)	Credit card industry income, 2018 (billions)	Credit card industry income, 2020 (billions)
Interest income	\$63.4	\$78.3	\$76
Interchange income	\$42.4	\$47.0	\$51
Cash advance fees	\$26.6	\$17.7	\$17
Annual fees	\$12.5	\$15.0	\$13
Penalty fees	\$12.0	\$11.0	\$12
Enhancement income	\$6.3	\$9.0	\$7
Total income	\$163.2	\$178.0	\$176

Data source: R.K. Hammer/Card Knowledge Factory [®]. Data requested by the author.

Minor Comments

- Shock to R_f alone is a shock to the cost of funds. It is not a "monetary policy" shock
 - Authors allow capacity \overline{L} to respond to the shock (reasonable), but other model invariants do too:
 - the expected loss function μ
 - value of borrowed funds V
 - An MP interpretation should only be compared to empirical estimates of the pass-through that absorb these GE effects hard! I would just relabel.
- Does α need to be constant in the workhorse model? My μ' is around 0 at \$100K but is positive at \$1M.