Discussion of "The Demand for Money, Near-Money, and Treasury Bonds" by Krishnamurthy and Li

Vadim Elenev Johns Hopkins Carey MFA | March 2022

What this paper does? Asset Pricing Perspective

- For any asset: $P_{i,t} = E_t [M_{t+1}(D_{i,t+1} + P_{i,t+1})] + X_{i,t}$
- X (I will loosely refer to it as a non-pecuniary payoff) can be
 - +: liquidity, collateral value
 - -: (non-pecuniary) storage costs
- This paper: explore X for "safe" assets *i* where $D_{i,t+1} = 1$ and $P_{i,t+1} = 0$
 - $P_{i,t} = E_t[M_{t+1}] + X_{i,t}$
 - "money, near-money, and treasury bonds" = short-term assets with a known ("safe") payoff
- Goal: parametrize the demand system for non-pecuniary payoffs in excess of some benchmark asset j
 - Focus on X by eliminating $E_t[M_{t+1}]: P_{i,t} P_{j,t} = X_{i,t} X_{j,t}$
 - $X_{i,t}$ can be a function of quantities Q_i, Q_j, \dots and the state of the economy
 - No explicit micro-foundation for X (e.g. search, info insensitivity, etc.)
- Enables one to impact of quantitative policies e.g. QE, bank capital/reserve/liquidity regulation, changes in money supply

Estimation

- Assets: 3-month treasury B_t , non-time bank deposits D_t , non-deposit fin sector debt D_t^{NB} (repos, CP, GSE short-term debt)
 - Baseline asset: banker's acceptances until 91, 3M GC repo post 91, Fed Funds, Commercial Paper
- CES Demand system
 - Model 1 (Nagel 16): $\left((1-\lambda_t)D_t^{\rho}+\lambda_t B_t^{\rho})\right)^{\frac{1}{\rho}}$
 - Model 2: $\left((1-\lambda_t)D_t^{\rho}+\lambda_t\left((1-\mu_t)(D_t^{NB})^{\eta}+\mu_tB_t^{\eta}\right)^{\rho}\right)^{\overline{\rho}}$
- Model 1 implies $i_t i_t^b = \frac{\lambda_t}{1 \lambda_t} \left(\frac{B_t}{D_t}\right)^{\rho 1} \left(i_t i_t^d\right)$
 - Goal: estimate ρ
 - Calculate $i_t i_t^b$ and $\frac{B_t}{D_t}$ in the data, assume $\frac{\lambda_t}{1-\lambda_t} \sim \text{VIX}$ ("flight to safety") and $i_t i_t^d \sim \text{FFR}$
 - Estimate
 - Nagel's linear estimation: ho pprox 1 (bank debt and govt debt perfect substitutes)
 - This paper's GMM estimation: ho pprox 0.6 (bank debt and govt debt partial substitutes)
- Estimation of Model 2 finds $\rho \approx 0.6, \eta \approx 0.8-1$

Results

- Deposits and Treasuries are NOT perfect substitutes
 - Differences from prior work due to different specification motivated by theory
 - A different quantity measure (B / D) instead of (B / Y)
 - Non-linear estimation
- Interest rate elasticity of money demand is stable over time if "money" is defined as the CES liquidity aggregate
 - Not true if money is defined as M1 ("missing money puzzle")

Comment Summary

- Very nice paper identifying important parameters
 - Battery of robustness tests that I didn't mention...
 - + 0 < ρ < 1 is a robust result, and even $\rho \approx$ 0.6 is surprisingly stable
- Questions I had (and tried to answer)
 - What is driving the fit?
 - What does time-varying λ_t measure?
 - Which treasuries provide liquidity services, and to whom?
 - What is the role of the benchmark assets?

Estimation Inputs

Can't visualize 4D, let's visualize 2D

How much of the variation in Treasury liquidity premium do quantities explain ON TOP of the other stuff?

 $\frac{lp_t}{VIX_t FFR_t} = \beta_s \beta_\lambda \left(\frac{B_t}{D_t}\right)^{\rho-1} + u_t$

Without Low FFR Periods

How much of the variation in Treasury liquidity premium do quantities explain ON TOP of the other stuff?

 $\frac{lp_t}{VIX_tFFR_t} = \beta_s \beta_\lambda \left(\frac{B_t}{D_t}\right)^{p-1} + u_t$

What does time-varying λ_t measure?

- Idea: in times of uncertainty, non-pecuniary value of deposits falls relative to Treasuries
- Why?
 - Deposits not at safe as previously thought
 - But, deposits include:
 - Checking
 - Savings (including MMA)
 - Small time deposit (defined in Call Reports as less than the FDIC limit)
 - How much money in these checking and savings accounts is above FDIC insurance limit?
 - Treasuries are always more useful as collateral, and multipliers on constraints increased
- Better ways to measure each story than VIX
 - Bank risk: cross-sectional dispersion of non-insured debt spreads? (~Gorton-Penacchi idea of liquidity)
 - Treasury collateral: measure of binding constraints (e.g. credit line drawdowns) for nonfinancial sector (since that's the modeled agent)

Which treasuries provide liquidity services, and to whom?

- Liquidity premium measured using 3M T-Bills
- B in B / D measured using all Treasuries
- Implicit assumptions
 - Treasuries perfect substitutes across maturities
 - Convenience yield curve is flat
- Alternative 1: use T-bill quantity for B
 - FoF breaks down Treasury holdings into T-bills and Other for some sectors, can be used to put an upper bound on HH T-Bill quantities
 - Downside: Non-fin sector doesn't hold many T-Bills, fin sector holds most
- Alternative 2: compute the liquidity premium using a longer-horizon bond assuming term risk is differenced out by the baseline asset
- Deeper question: does the same SDF price T-bills and deposits?
 - Maybe it does, but then B should include holdings by fin sector as well

What is the role of the benchmark assets?

- We can't measure $X_{i,t}$, only $X_{i,t} X_{j,t}$
 - Liquidity relative to some other benchmark (i.e. lower liquidity) asset
- This paper
 - Treasury liquidity: relative to GC Repo
 - Deposit liquidity: relative to FFR
 - Non-bank debt liquidity: relative to P2-rated CP
- Why 3 different benchmarks?
 - GC Repo is available for longer, but has its own liquidity benefit
 - But FFR?
- Implications for policy
 - Estimate of ρ allows a central banker to predict the change in a liquidity spread $X_{i,t} X_{j,t}$ e.g. as a result of e.g. quantitative easing
 - But the spread $X_{j,t}$ of the "true" risk-free rate over the baseline asset will likely change as well
 - What is the effect on $X_{i,t}$?