## Discussion of **Size Premium Waves**

by Bernard Kerskovic, Thilo Kind, and Howard Kung

#### Vadim Elenev

Johns Hopkins Carey

Frontiers in Macrofinance Conference — June 2018

#### Main Idea

- Document stylized facts: at low frequencies,
  - Equity risk premium co-moves with macro uncertainty
  - Size and value premia co-move with cross-sectional dispersion ("micro uncertainty")
  - Equity risk premium is negatively correlated with size and value premia
  - Macro and micro uncertainty negatively correlated

- Can firm productivity dynamics explain these? Yes.
  - Firm size contains information about past idiosyncratic productivity realizations
  - Persistent productivity productivity
  - ► Future productivity affects timing of risky cash flows, something agents with EZ preferences care about ⇒ size premium

#### **Discussion Overview**

- I enjoyed reading this (very short) paper and liked very much!
- Model provides a simple framework to understand time-varying risk premia through a macro lens

- What I will talk about:
  - Review raw data underlying the low frequency stylized facts
  - Describe the main mechanism of the model
  - Provide comments

#### Trend in micro uncertainty - main low frequency fact?



### Taking out a (deterministic) trend



#### What about macro uncertainty?



#### Macro vs. Micro



#### Looking at returns



#### Macro uncertainty and equity premium



#### Micro uncertainty and size premium



#### **Empirical Recap**

- Before wide band pass filtering a relatively short time series, do the stylized facts pass the eyeball test? Mostly
- Clear patterns
  - Dynamics of macro uncertainty
  - Negative correlation between detrended micro uncertainty and macro uncertainty
  - Relationship between macro uncertainty and ERP
- A few outstanding questions:
  - What about the trend in micro uncertainty? How to think about a detrended low frequency series?
  - Over the last 30 years, did value premium decouple from size and join ERP? What changed?
  - How long have size and micro uncertainty co-moved?

#### Model: Key Ingredients

- Exogenous consumption path
- Epstein-Zin preferences with EIS > 1/RRA so preference for early resolution of uncertainty
- Firm productivity consists of aggregate and idiosyncratic components
  - Both are persistent
  - Both subject to shocks with time-varying vol
- Investment subject to quadratic asymmetric adjustment costs disinvestment more costly

- What happens when a firm's idiosyncratic productivity goes down for a while?
  - It invests less and less, shrinking in size

- What happens when a firm's idiosyncratic productivity goes down for a while?
  - It invests less and less, shrinking in size
- What happens when you go long small firms, short large firms?
  - Small firms have low productivity, large firms have high productivity
  - Productivity is mean-reverting, so expected to increase for small firms, decrease for large firms
  - Small firms: ↑ productivity ⇒ ↑ investment ⇒ ↓ dividends (in the short/medium term)
  - ▶ Large firms:  $\downarrow$  productivity  $\implies \downarrow$  investment  $\implies \uparrow$  dividends (in the short/medium term)

- What happens when a firm's idiosyncratic productivity goes down for a while?
  - It invests less and less, shrinking in size
- What happens when you go long small firms, short large firms?
  - Small firms have low productivity, large firms have high productivity
  - Productivity is mean-reverting, so expected to increase for small firms, decrease for large firms
  - Small firms: ↑ productivity ⇒ ↑ investment ⇒ ↓ dividends (in the short/medium term)
  - ▶ Large firms:  $\downarrow$  productivity  $\implies \downarrow$  investment  $\implies \uparrow$  dividends (in the short/medium term)
- Key result: small-firm cash flows come in later
- With preference for early resolution of uncertainty, small firms command higher risk premium

- What happens when a firm's idiosyncratic productivity goes down for a while?
  - It invests less and less, shrinking in size
- What happens when you go long small firms, short large firms?
  - Small firms have low productivity, large firms have high productivity
  - Productivity is mean-reverting, so expected to increase for small firms, decrease for large firms
  - ▶ Small firms:  $\uparrow$  productivity  $\implies \uparrow$  investment  $\implies \downarrow$  dividends (in the short/medium term)
  - ▶ Large firms:  $\downarrow$  productivity  $\implies \downarrow$  investment  $\implies \uparrow$  dividends (in the short/medium term)
- Key result: small-firm cash flows come in later
- With preference for early resolution of uncertainty, small firms command higher risk premium
- $\uparrow$  vol of idiosyncratic productivity shock  $\implies \uparrow$  cross-sectional dispersion  $\implies \uparrow$  difference in cash flow timing  $\implies \uparrow$  size premium

#### Main Comment: what happens to small firms?

- Model: they get bigger
- Data: they get bigger or they die



#### Time-Varying Dispersion and Exit

- If firms can exit, set of investable firms missing the left tail of the productivity distribution
- If dispersion goes up, marginal firm closer to mean/median productivity in standard deviation units, so
  - Time until large dividend payments is shorter
  - Probability of exit (potentially with large liquidating dividend) is higher
- Does size premium still go up?

# More broadly: what does the model imply for decile transition dynamics?

Calibration target: monthly transition matrix for CRSP/Compustat

|     | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | Exit  |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| 1   | 72.32% | 11.08% | 4.15%  | 2.73%  | 2.87%  | 2.11%  | 1.32%  | 1.07%  | 0.63%  | 0.20%  | 1.53% |
| 2   | 11.96% | 76.34% | 7.72%  | 1.58%  | 0.48%  | 0.17%  | 0.54%  | 0.26%  | 0.00%  | 0.00%  | 0.96% |
| 3   | 4.20%  | 8.88%  | 76.19% | 8.56%  | 0.21%  | 0.32%  | 0.76%  | 0.00%  | 0.00%  | 0.00%  | 0.87% |
| 4   | 2.68%  | 1.53%  | 9.77%  | 75.59% | 8.42%  | 0.95%  | 0.23%  | 0.03%  | 0.00%  | 0.00%  | 0.80% |
| 5   | 2.81%  | 0.42%  | 0.18%  | 9.45%  | 77.48% | 8.73%  | 0.16%  | 0.08%  | 0.00%  | 0.00%  | 0.69% |
| 6   | 1.94%  | 0.07%  | 0.28%  | 0.94%  | 9.37%  | 79.35% | 7.10%  | 0.14%  | 0.02%  | 0.00%  | 0.78% |
| 7   | 1.19%  | 0.45%  | 0.67%  | 0.17%  | 0.15%  | 7.48%  | 83.01% | 6.28%  | 0.11%  | 0.00%  | 0.48% |
| 8   | 0.90%  | 0.24%  | 0.00%  | 0.00%  | 0.01%  | 0.08%  | 6.32%  | 87.08% | 4.91%  | 0.01%  | 0.43% |
| 9   | 0.53%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.01%  | 0.03%  | 4.66%  | 91.63% | 2.71%  | 0.43% |
| 10  | 0.19%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 0.01%  | 2.48%  | 97.04% | 0.28% |
| try | 0.03%  | 0.02%  | 0.02%  | 0.02%  | 0.02%  | 0.02%  | 0.01%  | 0.01%  | 0.01%  | 0.00%  |       |

Decile

Entry

#### Conclusion

• Paper contributes to a growing literature on macro explanations of risk premia time series (as opposed to just means and standard deviations)

#### Conclusion

- Paper contributes to a growing literature on macro explanations of risk premia time series (as opposed to just means and standard deviations)
- Takes existing framework for risk premia driven by cross-sectional differences in timing of cash flows and adds heteroskedasticity to explain low frequency fluctuations in expected returns

#### Conclusion

- Paper contributes to a growing literature on macro explanations of risk premia time series (as opposed to just means and standard deviations)
- Takes existing framework for risk premia driven by cross-sectional differences in timing of cash flows and adds heteroskedasticity to explain low frequency fluctuations in expected returns
- Suggestions
  - Establish stylized facts a bit more thoroughly: why detrend TFP dispersion? Is 20-50 bandpass filtering really that informative when applied to a 50-80 year data set?
  - Given the empirical heterogeneous importance of firm exit across time and size, consider how robust the model's mechanism is to the constant-set-of-firms assumptions
  - Model generates rich set of quantitative predictions, which can be used to discipline it e.g. size decile transitions