Discussion of "Inflation and Treasury Convenience" by Anna Cieslak, Wenhao Li, and Carolin Pflueger

Vadim Elenev Johns Hopkins Carey SFS Cavalcade | May 2024

Why we should all care about this paper

- Given market prices of assets with similar cash flows, it should be 80 bps more expensive for the Treasury to borrow than it is.
- [Marketable] debt outstanding: <u>\$24.6 trillion</u>
- 0.8% x \$24.6T approx. \$200B / year savings
- Entire Federal transportation budget is only <u>\$115B</u>

Why we should all care about this paper

- But this "convenience yield" varies over time
 - Risky asset for the Treasury
- Understanding the asset pricing properties of Treasury convenience yields key for assessment of fiscal capacity
- This paper: relationship between convenience yields and inflation
 - Particularly relevant given last few years

Empirics: Three Regimes

- Inter-war & 21st century: low inflation and negative correlation
- Second half of 21st century: high inflation and positive correlation
- Robust to controls, shifts in sample bounds, lead-lags

Empirics: Frequencies

- Particularly pronounced effects at low frequencies: apply lowpass filter to monthly data
 - Left panel: Example with normalized filter frequency of 0.001
 - Right panel: correlations of filtered series for a range of frequencies. Low frequency correlations are higher.

Theory: Two Channels

- Money: Inflation increases convenience yields on bonds because it raises the opportunity cost of holding the other convenient asset – money
 - For another monetary take on inflation and portfolio choice, see Aoki, Michaelides, Nikolov, Zhang (2024)
 - Consistent with the second panel
- Safety: a liquidity shock that raises the convenience yield of Treasuries effectively raises the private market real rate, acts like a negative demand shock, lowers inflation
 - Consistent with the first and the third

Identifying Drivers of Co-Movement

- An SVAR perspective
- Reduced-form VAR(1) with convenience yield and inflation
- $\begin{bmatrix} cy_t \\ \pi_t \end{bmatrix} = \Phi \begin{bmatrix} cy_{t-1} \\ \pi_{t-1} \end{bmatrix} + u_t, \quad E_{t-1}[u_t u_t'] = \Omega \quad (2 \times 2)$
- Structural VAR: $u_t = H \Sigma \epsilon_t$
 - ϵ_t is an N x 1 vector of shocks with identity covariance matrix
 - Σ is a N x N diagonal matrix of shock standard deviations
 - *H* is 2 x N mapping of "structural" shocks to reduced-form innovations
- Identification challenge: we can estimate Ω from the data, but without additional restrictions that's not enough to identify economic channels H (even if N=2)

Two Approaches for Imposing Restrictions

- Micro-founded model provides cross-equation restrictions: Φ , H, and Σ are all functions of model parameters. Use empirical estimates of Φ and Ω to estimate parameters, then calculate H
 - Shocks ϵ_t show up in model equations, get economic interpretation
 - Write model such that $\epsilon_{1,t}$ directly affects cy_t , $\epsilon_{2,t}$ directly affects π_t
 - Direct channel := H_{12} or H_{21} a function of statistical parameters
 - Other channels: H_{12} or H_{21} a function of preference, technology, etc. parameters, H_{1j} or H_{2j} non-zero for j > 2
- Alternative approaches: long/short-run restrictions, narrative/event-based partial ID, etc.
 - E.g., Ludvigson, Ma, and Ng (2021)
 - Informally, already in the current paper when rejecting a FTPL explanation for the GFC episode
 - Why not formalize?

A 2+N Equation New Keynesian Model

- Taylor Rule (subject to MP shocks)
- New Keynesian Philips Curve (subject to supply shocks)
- N Euler Equations for N assets
 - The "real rate" is given by consumption dynamics (subject to demand shocks)
 - Nominal rate on each asset depends on
 - Real rate
 - Expected inflation
 - Marginal non-pecuniary benefit of the asset ("convenience yields") subject to "liquidity" shocks")
 - Traditionally, two assets
 - Bond in 0 net supply with 0 convenience yield ("IS equation" + "Fisher Equation")
 - Money (-in-the-utility) whose supply is M is chosen by the central bank such that convenience yield = bond nominal rate, i.e., nominal return on money is 0
 - To have other assets in positive supply (so they can provide convenience), need either other agents (heterogeneous households, intermediaries, government) or some exogenous marketclearing

This 2+3 Equation New Keynesian Model $U(C_t, Q_t, N_t; \Theta_t) = \frac{\Theta_t C_t^{1-\gamma}}{1-\gamma} + \alpha \log Q_t - \chi \frac{N_t^{1+\eta}}{1+\eta}$ $Q_t = (1 - \lambda_t) D_t + \lambda B_t$

- The "real rate" is given by consumption dynamics (subject to ⊙ MU demand shocks)
- Loans i^l : no convenience yield, zero net supply and market-clearing rate
- Treasuries *i^b*: some convenience yield and rate set by a Taylor rule
- Deposits i^d : most convenience yield and exogenous prices: $1 + i^d = \delta(1 + i^l)$
 - Pins down Q, i.e., plays the role of the money supply equation in a standard NK model with money, where $\delta = \lambda = 0$ and so money supply $Q = \alpha \Theta C^{-\gamma}$ in steady state
- Liquidity shock to λ changes **relative** convenience of treasuries vs. deposits
- What kind of shocks cause a flight to safety into treasuries from deposits and money?

Inflation \rightarrow Convenience Yields

$$cy_t^b \coloneqq i_t^l - i_t^b = \frac{\lambda_t(1-\delta)}{1-\lambda_t - \lambda_t(1-\delta)} (1+i_t^b)$$

- If δ is less than 1 (imperfect pass-through of loan rates to deposits) and λ_t is less than 1/2 (deposits are more convenient than Treasuries), convenience yields increase with the policy rate i_t^b
 - Which increases with inflation
- Cost-push shocks of the 1970s explain positive co-movement
- 1. But does δ stay constant?
 - Dreschler, Savov, and Schnabl (2023) argue that repeal of Reg Q raised δ causing lower inflation
 - Simultaneous increase in i_t^b and δ has ambiguous effects on cy_t^b in expression above
- 2. Curious implication of the perfect substitutability assumption
 - If deposits are money ($\delta = 0$) and if Treasuries are as convenient as money ($\lambda_t = 1/2$), then according to this model the Fed can't conduct monetary policy

- In a standard model, IS + Fisher equation $x_t = E_t x_{t+1} - \gamma^{-1}(i_t - E_t \pi_{t+1}) + \nu_{x,t}$
- Shows how policy rate i_t -- the only rate in the model -- lowers the output gap x_t like a negative demand shock $v_{x,t}$

- In a standard model, IS + Fisher equation $x_t = E_t x_{t+1} - \gamma^{-1} \left(\frac{i_t}{t} - E_t \pi_{t+1} \right) + \nu_{x,t}$
- Shows how policy rate i_t -- the only rate in the model -- lowers the output gap x_t like a negative demand shock $v_{x,t}$
- But here, the rate that matters for intertemporal substitution is i_t^l

- In a standard model, IS + Fisher equation $x_t = E_t x_{t+1} - \gamma^{-1} (i_t^b + c y_t^b - E_t \pi_{t+1}) + \nu_{x,t}$
- Shows how policy rate i_t -- the only rate in the model -- lowers the output gap x_t like a negative demand shock $v_{x,t}$
- But here, the rate that matters for intertemporal substitution is $i_t^b + cy_t^b$
 - Log-linearized $cy_t^b = a\lambda_t + b i_t^b$ split into direct and inflation-driven effects

 Plugging NKPC into the Taylor Rule, [inflation-only] Taylor rule and cy into IS + Fisher, we get

$$x_{t} = \frac{\gamma}{\gamma + (1+b)\phi} E_{t} x_{t+1} - \frac{[(1+b)\phi - 1]}{\gamma + (1+b)\phi} E_{t} \pi_{t+1} + \frac{\gamma}{\gamma + (1+b)\phi} \nu_{x,t} - \frac{a}{\gamma + (1+b)\phi} \lambda_{t}$$

- + Convenience yield shock looks like a demand shock:
 - Central bank sets convenient rate. Spike in cy raises the private rate, causing a contraction that's only partly offset by a lower policy rate
- Implication: the central bank should accommodate financial shocks, to the extent these shocks cause a flight to safety and raise convenience yields. Maybe the Fed already does?
 - New term in Taylor rule vs. higher coefficient on output?

Separability Matters

•
$$\frac{C_t^{1-\gamma}}{1-\gamma} + \alpha \log Q_t \rightarrow \text{Strong income effect}$$

- If consumption doubles, the marginal utility cost of buying a bond goes down, but the liquidity benefit the bond provides remains unchanged
- Typical of how we model non-pecuniary liquidity demand (me too!)
- But this paper is specifically about the convenience yield demand relationship
 - Worth showing robustness to alternative preference specifications
 - Same for the perfect deposit/bond substitutability (though qualitatively robustness is apparent)

What the model may be missing

- Micro-foundation for the liquidity shocks
- Financial intermediaries (microfoundations for δ , supply of deposits)
- Risk premia
- Fiscal policy and supply of treasuries (particularly relevant going forward)
- Alternative model: Elenev, Landvoigt, Shultz, and Van Nieuwerburgh (2022) [ELVNS]

ELVNS

- Ingredients
 - NK firms
 - Households holding equity, deposits, and LT Treasuries
 - Banks holding loans and ST Treasuries
 - Fiscal authority with counter-cyclical fiscal policy until it's no longer sustainable (endog. regime switch)
- Binscatter of inflation and convenience yield
 - Negative correlation at typical inflation levels
 - Positive correlation at high inflation
 - Driven by fiscal policy regimes

Debt/GDP-Dependent Effects of a (Large) Negative Demand Shock and Policies

- Increase in the risk premia on future surpluses → higher convenience yields
- At low Debt/GDP levels, causes
 - Large contraction
 - ZLB
 - Deflation
 - Corr[cy, inflation] < 0
- At high Debt/GDP levels, concerns about fiscal sustainability
 - Raise expected inflation, act as a negative supply shock (no ZLB)
 - Corr[cy, inflation] > 0

Conclusion

- Interesting, important paper that sheds light on a relevant policy question!
- Simple, elegant model to highlight key channels that were operative in the last 100 years
- Summary of my comments
 - How much identification could we get without a full model?
 - How robust are the proposed channels to reduced-form assumptions and functional forms?
 - Even if a fiscal channel wasn't important in the past, it is likely to be in the future